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ELECTRICAL RESISTANCE OF. THE SKIN 

Function and Structure of Skin 

In beginning an examination of the electrical resistance of the skin, 

it is worthwhile to describe the function and structure of the skin. 

main functions of the skin a re  the following: to keep out foreign substances, 

to protect the underlying tissues from injury, to maintain adequate mois- 

ture in the tissues, to regulate body temperature, to aid in the elimination 

of water and waste materials, such a s  oil and wax, and to act as the 

receptor organ for the sense of touch. 

teria to pass through. 

the skin experiences injuries, such as, bruises, blisters, cuts, and puhc- 

tures. 

The 

There a r e  pores that allow bac- 

These openings are never closed. Fairly frequently 

The skin o r  integument is essentially composed of three layers of 

tissue, the epidermis, corium (true skin), and the subcutaneous tissue 

(Figure 1). 

of layers of cells. 

the stratum corneum o r  horny layer. 

coarse fibers that is easily penetrated by ions, large molecules, and 

even molecular aggregates. Medial to the horny layer is the stratum 

lucidum or living barrier.  It cannot be seen clearly except in the skin 

of the palms and soles. These are the regions where the galvanic skin 

response and the endosomatic skin response a r e  the most pronounced. 

The stratum lucidum blocks the passage of fluids that a r e  applied to the 

skin. 

of the epidermis that seems to be permeable to cations, but is imper- 

meable to anions. 

The epidermis has no blood vessels and consists of a number 

Forming the most lateral portion of the epidermis is 

This layer is a porous network of 

Eighty percent of wet skin resistance resides in this thin membrane 
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Below the stratum lucidum lies the inner portion of the epidermis, 

Substances that have penetrated to this layer find the malphigian layer. 

no difficulty in continuing their movement throughout the epidermis. 

Medial to the epidermis is the corium or  internal dennis that is 

composed of loose connective tissue. Contained in the corium a re  capil- 

laries, lymphatics, nerve endings, lobules of fat, roots of hair follicles, 

sebaceous glands, and sweat glands. 

of ions. 

tor. 

The corium is passive to the migration 

Below the corium i s  subcutaneous tissue, which is a good conduc- 

Portions of sweat glands may penetrate into the subcutaneous tissue. 

There a re  two types of sweat glands, apocrine and eccrine. The 

latter type outnumber the former and a re  widely distributed, being mos,t 

dense in the palmar, plantar, forehead, and axillary regions. The 

average daily excretion of sweat averages about one pint. Nerve centers 

in the brain and spine regulate the action of these glands. Sensory stimuli 

can cause the sweat glands to increase their activity, but fright, nervous- 

ness, o r  severe pain will cause an even more marked increase. 

rate of sweat secretion of an area increases, the skin resistance falls. 

A s  the 

Resistance and Capacitance of Skin Layers 

Skin resistance, which can be measured by placing electrodes on 

the epidermis, is a function of the resistances of basically two layers of 

the skin. 

and stratum corneum. 

centimeter have been found for  the stratum lucidum. 

established by tests on various parts of the body for  subjects in differing 

conditions. 

1, 000,000 ohms per square centimeter to the total resistance.2 When 

audio frequencies less  than 1,000 cps a r e  impressed on the corneum, the 

resistance is very high. Increasing the frequency reduces the resistance 

of the corneum. 

The primary sources of skin resistance a r e  the stratum lucidum 

Resistances from 5,000 to 500,000 ohms per square 

This range was 

If the stratum corneum is dry, it can contribute more than 
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When the frequency of the applied current is raised, the impedance 

falls due to capacitive shunting. 

quencies of 250-300 Kc the capacitive reactance through the skin is 

small  (with an electrode a rea  of 2 . 5  square cm) that the voltage drop in 

the stratum corneum can be d i ~ r e g a r d e d . ~  Experimental data that has 

been gathered indicates that the impedance was constant a t  7,000 ohms 

from 10-20 lcps and fell to 0.707 of this ,value at 80 cps, which corresponds 

to a shunt capacity of 0.28 pF. 

0.25-0. 35 pF. Attenuation at higher frequencies is less than would be 

expected from the model that was just cited, since experimental evidence 

has shown that the impedance at 320 cps was 2,100 ohms and not the ex- 

pected value of 1,700 ohms. 

view that the skin capacitance has a phase angle less than 90 degrees. 

Calculations have shown that a t  fre- 

L 

Capacitance has been found to vary from 

Evidence such a s  this tends to support the 
4 

Dependence of Resistance on Time 

Both skin capacitance and skin resistance have been shown to vary 

with time. 

thousand ohms per square em. 

is a corresponding reduction in skin resistance. 

to take place simultaneously with the increase in stimulus. In fact, it has 

been found that skin resistance varies without time lag in accordance with 

the instaneous magnitude of the voltage across the skin. The prolonged 

passage of currents at densities exceeding 1 p A  per square cm causes a 

profound fall in resistance. 

and incompletely reversible fall in skin resistance, especially at the 

cathode. 

position of the electrode that is in contact with the skin. 

is an important influencing factor of skin resistance. 

Initial resistance is very high, frequently over several hundred 

As the stimulus value is increased, there 

This reduction appears 

Continued passage of DC brings about a slow 

A partial cause of this effect is the influence of the ionic com- 

Thus ion migration 
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Experimental evidence has indicated that after an initiai rapid fall 

in impedance, the resistance to voltages between one and 2.5 V w a s  

about twice a s  large for anodal currents as for cathodal currents. 

voltages greater than 2.5 V were applied, the skin resistance decreased 

irreversibly, and the difference between anodal and cathodal effects was 
5 

diminished. It was found, however, that the initial resistance was the 

same for currents in both directions. 

a sweat gland, it w a s  found that the negative potential increased, but when 

an anode was applied, an initial peak E M F  was generated that declined a s  

the current continued. 

Two of the subjects reacted to the sweat gland tests as described above, 

and the remaining two subjects produced results similar to those expected 
6 

fo r  the epidermal portion of the skin. 

If 

In applying a cathode electrode to 

For the epidermis, the opposite was found to hold. 

Factors Causing Variation in Skin Resistance 

The example above illustrates that different subjects can yield 

differing skin resistance measurements. Beside the variation in skin 

resistance between subjects, the following factors a r e  also important: 

size of electrode, type of electrode, bodily area from which the records 

are taken, temperature of this  area, whether the external current passing 

through the subject is AC or DC, the size of this current, and whether it 

remains constant or varies with the change of resistance from subject 

to subject. 7 

Ions that naturally occur on the skin can be a potential source of 

variation in skin resistance. 

that can produce sodium chloride in  concentrations of more than 0.05 M. 

This value can become significantly higher as a result of the evaporation 

of the sweat. 

falls. 

of skin resistance, and minute cuts or punctures that may be difficult 

One source of ions is from the sweat glands 

As the amount of perspiration increases, skin resistance 

Even small quantities of sweat greatly interfere with measurements 
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to visually locate can greatly reduce the basal resistance by acting as 

short circuits through the stratum corneum and stratum lucid-. 

trodes must be applied to clean and dry skin surfaces to sharply define 

the effective surface area of the electrode azd to obtain reproducible 

contact impedance measurements. 

Elec- 

Relationship Between Sweat Glands and Skin Resistance 

The three electrode measurem-ents that can be made at the surface 

of the skin a re  endosomatic skin response, basal skin resistance, and 

galvanic skin response. Endosomatic skin response is independent of 

the area under measurement, while exosomatic skin response varies 

inversely with area. Basal skin resistance varies inversely, but not 

linearly, with temperature by approximately three percent per degree 
8 

centigrade. 

(GSR) and the general level of palmar skin resistance a s  Figure 2 indi- 

cates. 

There is a relationship between galvanic skin response 

It has been found that the presence and magnitude of the galvanic 

skin response is directly related to the number of sweat glande present 

in the area under the electrodes used for measurement. 

shows, the galvanic skin response is dependent on skin resistance; thus, 

since galvanic skin response has been found to be related to the number 

of sweat glands in a region, the skin resistance of ar. a rea  is dependent 

on the number of sweat glands per square cm. 

As Figure 2 

At  55 degrees Fahrenheit, in patients with congenital absence of 

sweat glands, no areas  of low skin resistance could be found. 

sults a r e  similar to those for  normal subjects, because a t  low temperatures 

Such r e -  

the sweat glands a re  inactive. At room temperature the skin resistance 

6 
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Figure 2. Relationship Between Palmar Resistance and 
Galvanic Skin Response 
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for  the previously mentioned patients remained extremely high over most 

of the body, but areas of somewhat lower resistance were detected in the 

face and over the upper chest. 

a r eas  were found for the palms, soles, and armpits. 

of heating, the patients' skin resistances remained very high except for 

the five areas  just listed where the resistance became very low. In the 

armpit region,, the resistance was 150,000 ohms, while on the trunk it 

was about 3,000,000 ohms. 

Resistances considerably below these 

After thirty minutes 

10 

The relationship between skin resistance and density of sweat glands 

is clearly shown by the test  results above, and it can easily be compre- 

hended that the most important path in galvanic skin resistance is through 

the sweat glands. 

eccrine glands, which provide shunt paths through the stratum corneum 

and stratum lucid-. 

by the sympathetic nervous system by its effect on emotional sweat sec- 

Thus, skin resistance is related to the ducts of the 

The resistance of these shunt pathways is controlled 

retion. 

is dramatically lower and nr ies  inversely with environmental tempera- 

ture and consequent sweat gland activity. 

approximately 20,000 ohms per square cm. A hypothesis can be made 

for a reas  containing sweat glands that have their excretory duct closed 

or  collapsed. 

close to that for a body area that does not have any sweat glands. 

In areas where sweat glands a r e  present, the electrical resistance 

Minimal skin resistance is 
11 

These a reas  will record a skin resistance that will be very 

Model of Skin ImDedance 

Now after presenting date on the function and structure of the skin, 

resistance and capacitance of skin layers, dependence of resistance on 

time, factors causing variation in skin resistance, and the relationship 

between sweat glands and skin resistance, a model of skin impedance can 

8 



can be put forth. Here 

only the stratum corneum, subcutaneous tissue, and deep tissues a r e  

taken into account. 

A rather simple model is shown in Figure 3. 

At low frequencies, the impedance of the skin is so 

high that most of the voltage applied will fall across R Since the sub- 

cutaneous tissue has a much lower impedance than the stratum corneum, 

nearly all of the measured skin impedance will be due to the lateral layer. 

Also the impedance between the two electrodes will be nearly independent 

of their separation. 

K' 

3 

A more complete modei of the skin and its underlying tissues is 

shown in Figure 4. Besides including the resistance and capacitance of 

the outer layers of skin and the resistance and capacitance of the internal 

tissues, the model in Figure 4 indicates the resistance and capacitance 

between the source and the subcutaneous tissue. 

resistance measurement, the resistive and capacitive affects of the stra- 

tum corneum and stratum lucidum are  so much greater than from the 

subcutaneous tissue that the latter may be considered a short circuit. 

Since nearly all of the internal tissues within the body a re  surrounded by 

ionic solutions that a r e  good conductors, it may be assumed that the elec- 

tr ical  signals that propage to the subcutaneous tissue a r e  attenuated only 

slightly and a r e  nearly undistorted. Thus, the resistance and capacitance 

from the source to the subcutaneous layer are very small. a the surface resistance is so high compared to the stratum corneum- 

When making a skin 

On the other 

stratum lucidum resistance that the f0rme.r may be neglected. 

-- 

Incorporating these assumptions into a schematic representation of 

the skin and adding a one mesh biogrid into the model, Figure 5 is ob- 

tained. 

the subcutaneous layer is a short circuit. 

This figure indicates that the electrical path from the source to 

The resistors that a r e  drawn 

9 



RK RM RK 

1 =  
2 =  
3 =  

E, = 
Ep = 

- 
RP - 
I 

CK = 

CM = 

RM a 

STRATUM CORNEUM 
SUBCUTANEOUS TISSUE 
DEEP TISSUES 
ELECTRODE ONE 
ELECTRODE TWO 

SURFACE CONDUCTIVITY OF SKIN 
RESISTANCE OF STRATUM CORNEUM 

CAPACITANCE BETWEEN CONTACT SURFACE OF 
ELECTRODES AND THE SUBCUTANEOUS TISSUE 

CAPACITANCE OF INTERNAL TISSUES 

RESISTANCE OF INTERNAL TISSUES 

TSC 5699 

Figure 3. Equivalent Circuit Resulting from 
Application of Electrodes to Skin l2 
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11 



1 
r 

r, = RESISTANCE OF GRID AS A FUNCTION OF LENGTH 

‘11 

L. 
r 

STRATUM CORNEUM AND STRATUM LUCIDUM 

AND r,* =RESISTANCE OF 1, ‘2, ‘3, ‘4, ‘9, ‘10, ‘11, 

F AND r16 = RESISTANCE OF BlOGRlD MESH 
5, ‘6, ‘7, r8, ‘13, ‘14, ‘15, 

TSC 5704 

Figure 5. Schematic Representation of a Pair of Single Mesh 
Biogrids and the Associated Skin Resistances 
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in the vertical direction have their lower ends shorted together in each 

biogrid square. 

the skin to the subcutaneous tissue. 

been assumed to have negligible resistance in comparison to the resistance 

of the stratum corneum and stratum lucidum. 

These resistors represent the path from the surface of 

Thus the subcutaneous tissue has 

Taking only the squares of the biogrid and the associated skin res i s -  

tances, the cube configuration in Figure 6 is formed. 

small dimensions, it can be assumed that the four resistances through the 

The four segments of the biogrid 

For a square of 

and r ) a r e  all equal. skin ( r l ,  rZs r3, 4 
(r5, r6, r and r ) can also be assumed to have the same resistance. 7' 8 

Thus we can let: 

r = r l  = r 2  = r 3  = r 4  a and 

r = r 5 = r 6  = r 7  = r 8  b 

Now the equivalent resistance taken from any of the four corners of 

This equivalent resistance will take the the biogrid mesh can be derived. 

effect of the biogrid into account as well as the resistance of the stratum 

corneum and stratum lucidum skin layers. 

resistance and the resistance measured by using just a problem can be made 

after deriving an expression for the former resistance. 

A comparison of the equivalent 

As a first step in deriving the equivalent resistance, the parallel 

resistance of r and the series resistance of r and r can be written. 1 5 2 

13 
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AND r, = RESISTANCE OF STRATUM CORNEUM AND STRATUM LUCIDUM 1. ‘2. ‘3. . r . . .  
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Figure 6. Schematic of a Single Mesh Biogrid 
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Let the parallel resistance be given by r 
m* 

r =  r t r  t r  1 2 5  m 

a s  previously defined, b = r5 and r a = r 1 = r 2  
Using r 

m r t r  t r b  2r  t rb a a a  

Including the parallel resistance of the r - r combination in the 
8 4  

overall resistance and setting equal to r 
n' 

n r t r  t r g  m 4  

r = r a n d r  = r  4 a 8 b  

r n r t r  + r b  
m a  

6 - r3  a r m a n d t h e  r 7 - r 3  
Now the remaining parallel paths a re  the r 

a r m  of the cube. Since 

f6 = r7 = rb and r = r 
3 a '  

this two arm path may be reduced t o  a single a rm composed of the series 

resistance 

r - b t r  . 
2 a 

15 



If r 
P 

b 
r 

is set equal to the parallel resistance of r and - 2 t r a , then 
n 

r 
P 

- - 
b 

n 2  a 

r 
r t - t r  

Substituting for r yields n 

r 
P 

r (r + rb) 

r (r +- rb) rb 

r + r  t r b  2 a 

m a  

m a  

m a  

m a  

r t r  t r b  

+ - t r  

Substituting for r yields m 

r 
P 

t b r - t r a r (ra + rb) 
t r  t r  a 

2 r  t r  a b  
a b  

2 
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. 
r 

la(la + lb )  2 b  (7' 

r (r + r  ) + (r  t rb) (2r  + rb) a a  b a a . .-  A -  

P 

r =  
P 

r =  
P 

2 r ( r  + r  ) 
a a  b 

r ( r  + r  ) + ( r  + r  ) ( 2 r  + r  ) + ( r b +  r ) ( 2 r  + r  ) 
a a  b a b  a b  - a a b  2 

b r 

a a  b 2 
r (r + r  ) (-+ra) 

r + 2 r  t r  
a a b  

b la(la + 'b) r 

r + 2 r  +r-  a a + (z+ r ) ( 2 r  + rb) 
a a b  

b r 

a a  b 2 
r (r + r  ) (- + fa) 

r. 
b r (r + r  ) t (31- + r  )(-+r ) ( 2 r  + r ) a a  b a b 2  a a b  

A comparison between the equivalent resistance (r ) of a biogrid square, 

stratum corneum and stratum lucidium layer with the resistance 

obtained by measuring with a probe can be made. 

the schematic for the biogrid-skin equivalent circuit and the simple 

probe skin resistance measurement. The equivalent resistance (r  ) ha6 E 
been derived and is given by the equation for r 

encountered by the probe i s  simply r . a 

P 

Figure 7 presents 

while the resistance 
P' 
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(a) Schematic of Biogrid-Skin 
Equivalent Circuit 

(b) Schematic of Resistance 
Measurement by Probe 

r a 

‘E 

= RESISTANCE OF GRID AS A FUNCTION OF LENGTH 9 
r = r  E EQUIVALENT 
r = RESISTANCE OF STRATUM CORNEUM AND STRATUM LUCIDUM a 

TSC 5706 

Figure 7 
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NOW we a r e  in a position to use these two resist  

order to find the effect of the biogrid on measur 

Figure 8 indicates the schematic for the skin resistance (r 1 encountered 

by a probe. 

A s  Figure 7 indicated, the resistance for the case with the biogrid is 

and r L  . represented by the parallel resistance of - = - 
this same resistance i s  indicated by the parallel resistance of r 

Thus 

es (r and r j in 
a P 

kin potential. 

a 
The resistance (r ) represents the addition of the biogrid. 

g 

r r E 
2 2 In Figure 8 

and r . 
a g 

r =  ra rp 
g 2 r  r t r  r 

a p  a b  - rb rp 

With this expression for r 

can be evaluated. 

the potential variation caused by the biogrid 
I3 ' 

It is, of course, realized that the case examined was for a one-mesh 

biogrid. For a continuous biogrid, the values of the grid resistances 

and the skin resistances become fractions of those assumed in the one- 

grid case, but the approach and derivation of r will be the same. 
g 

An additional report is being prepared which will include analysis of 

actual performance and will be based on experimental values. 
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Figure 8. Skin Potential as Measured by a 
Probe or by a Biogrid 
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